
Frontier and Squid for same
data access by many jobs

Dave Dykstra
dwd@fnal.gov

OSG Users' meeting
27 July 2007



The problem

Some applications need to get the same data to many jobs
on a compute cluster
Inefficient or impractical to initially send with the job
Data too large or too many jobs for all to retrieve over a
WAN directly from the source
Sometimes too much even for a single LAN source



The Frontier+Squid solution

Distributes rarely-changing data from central databases to
many clients around the world
Many sites
Many nodes/jobs at each site using same data

Transfers with http to take advantage of standard tools
Uses squid to cache centrally and locally at each site

also add-on monitoring tools MRTG and awstats
Name comes from “N-tier”
Developed for CDF at Fermilab
Being adapted for CMS at CERN (by Fermilab)



Frontier architecture

Tier 0
squid

http
frontier
servlet/
tomcat

http DBSQL

...

Application &
frontier_client

Tier>=1
squid

http

...

Application &
frontier_client

Tier>=1
squid

http

...

Application &
frontier_client

Tier>=1
squid

http

...

LAN

WAN
LAN

Central server

Site 1

Site 2

Site N



Frontier/Squid performance

Not designed for fast cache loading – 7MB/s or less to load
from Oracle DB through tomcat servlet

Can compress data: slows cache loading, speeds network

Adds 1/3 net overhead for hex encoding to fit into http/xml

Performs well for multiple clients once data is locally
cached, especially for objects a couple megabytes or larger

430MB/s total throughput for 2 squid servers each with 2
bonded gigabit interfaces and 2 squids

However, that may not be enough for many jobs or large
datasets that are loaded at nearly the same time

100MB * 1000 jobs / 430MB/s = ~4 minutes

10GB * 100 jobs / 430MB/s = ~40 minutes



Starting many jobs at once -
problem

CMS has an “Online” application with tight requirements:

All nodes start same application at the same time

Pre-loading data must be < 1 minute

Loading data to jobs must be < 10 seconds

Estimating 100MB of data, 2000 nodes, 8 jobs/node
100 * 2000 * 8 = 1.6TB

Asymmetrical network
Nodes organized in 50 racks of 40 nodes each

non-blocking gigabit intra-rack, gigabit inter-rack



Starting many jobs at once -
solution

Solution for CMS Online: squid on every node
Configured to pre-load simultaneously in tiers
Each squid feeding 4 means 6 tiers for 2000 nodes
50 racks reached in 3 tiers, 3 tiers inside each rack

Measurements on test cluster indicate requirements can
be met
bottleneck becomes the conversion from DB to http
10-second loading always reads from pre-filled local
squid



Grid environment

Much less controlled than CMS Online, but still may need
to load same data to many jobs at nearly the same time

One non-Frontier case needs 14GB of data, nearly 1GB
at a time during a long-running job, hundreds of jobs

Must have at least one local cache

If all load from same cache, 1GB * 100 nodes /
100MB/s (1 Gbit/s) would be 16+ minutes

Many different sites administered by many different people
Needs to be easy to configure



Grid environment proposal

It's easy to make data available on an http server
Proposal:
Primary (& possibly secondary) squid at each grid site
squid on every grid worker node
configured to find primary (& secondary) for site
automatic discovery of node peers because static
configuration is impractical



Automatic discovery of squid peers

squid-users suggested using existing multicast feature to
locate objects already cached in peers
doesn't scale to hundreds or thousands of nodes

Proposal: modify multicast peer discovery as follows
only peers that have objects respond
only when not heavily loaded

keep track of fastest responders and use unicast
queries most of the time
also keep track of fastest throughput and give them
priority to make best use of asymmetrical network
use existing TTL limit feature on multicast



Further info

Frontier home page: http://frontier.cern.ch/
Performance details on CMS Twiki
https://twiki.cern.ch/twiki/bin/view/CMS/FrontierPerformanceImprovements

http://frontier.cern.ch/
https://twiki.cern.ch/twiki/bin/view/CMS/FrontierPerformanceImprovements

